DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY7C1464AV25(2004) データシートの表示(PDF) - Cypress Semiconductor

部品番号
コンポーネント説明
メーカー
CY7C1464AV25 Datasheet PDF : 27 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
PRELIMINARY
CY7C1460AV25
CY7C1462AV25
CY7C1464AV25
Pin Definitions (continued)
Pin Name
I/O Type
Pin Description
BWa
BWb
BWc
BWd
BWe
BWf
BWg
BWh
WE
Input-
Synchronous
Byte Write Select Inputs, active LOW. Qualified with WE to conduct writes to the SRAM.
Sampled on the rising edge of CLK. BWa controls DQa and DQPa, BWb controls DQb and DQPb,
BWc controls DQc and DQPc, BWd controls DQd and DQPd, BWe controls DQe and DQPe, BWf
controls DQf and DQPf, BWg controls DQg and DQPg, BWh controls DQh and DQPh.
Input-
Write Enable Input, active LOW. Sampled on the rising edge of CLK if CEN is active LOW. This
Synchronous signal must be asserted LOW to initiate a write sequence.
ADV/LD
Input-
Synchronous
Advance/Load Input used to advance the on-chip address counter or load a new address.
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a
new address can be loaded into the device for an access. After being deselected, ADV/LD should
be driven LOW in order to load a new address.
ADV/LD
Input-
Synchronous
Advance/Load Input used to advance the on-chip address counter or load a new address.
When HIGH (and CEN is asserted LOW) the internal burst counter is advanced. When LOW, a
new address can be loaded into the device for an access. After being deselected, ADV/LD should
be driven LOW in order to load a new address.
CLK
Input-
Clock Input. Used to capture all synchronous inputs to the device. CLK is qualified with CEN.
Clock
CLK is only recognized if CEN is active LOW.
CE1
Input-
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with
Synchronous CE2 and CE3 to select/deselect the device.
CE2
Input-
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with
Synchronous CE1 and CE3 to select/deselect the device.
CE3
Input-
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with
Synchronous CE1 and CE2 to select/deselect the device.
OE
Input-
Output Enable, active LOW. Combined with the synchronous logic block inside the device to
Asynchronous control the direction of the I/O pins. When LOW, the I/O pins are allowed to behave as outputs.
When deasserted HIGH, I/O pins are tri-stated, and act as input data pins. OE is masked during
the data portion of a write sequence, during the first clock when emerging from a deselected state
and when the device has been deselected.
CEN
Input-
Synchronous
Clock Enable Input, active LOW. When asserted LOW the clock signal is recognized by the
SRAM. When deasserted HIGH the clock signal is masked. Since deasserting CEN does not
deselect the device, CEN can be used to extend the previous cycle when required.
DQa
DQb
DQc
DQd
DQe
DQf
DQg
DQh
DQPa
DQPb
DQPc
DQPd
DQPe
DQPf
DQPg
DQPh
MODE
I/O-
Synchronous
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that is triggered
by the rising edge of CLK. As outputs, they deliver the data contained in the memory location
specified by AX during the previous clock rise of the read cycle. The direction of the pins is
controlled by OE and the internal control logic. When OE is asserted LOW, the pins can behave
as outputs. When HIGH, DQa–DQd are placed in a tri-state condition. The outputs are automat-
ically tri-stated during the data portion of a write sequence, during the first clock when emerging
from a deselected state, and when the device is deselected, regardless of the state of OE.
I/O-
Synchronous
Bidirectional Data Parity I/O lines. Functionally, these signals are identical to DQ[31:0]. During
write sequences, DQPa is controlled by BWa, DQPb is controlled by BWb, DQPc is controlled by
BWc, and DQPd is controlled by BWd, DQPe is controlled by BWe, DQPf is controlled by BWf,
DQPg is controlled by BWg, DQPh is controlled by BWh.
Input Strap Pin Mode Input. Selects the burst order of the device. Tied HIGH selects the interleaved burst order.
Pulled LOW selects the linear burst order. MODE should not change states during operation.
When left floating MODE will default HIGH, to an interleaved burst order.
TDO
JTAG serial output Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK.
Synchronous
TDI
JTAG serial input Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK.
Synchronous
Document #: 38-05354 Rev. *A
Page 6 of 27

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]