DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

TC642 データシートの表示(PDF) - Microchip Technology

部品番号
コンポーネント説明
メーカー
TC642 Datasheet PDF : 28 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
TC642
Table 5-1 lists recommended values for RSENSE based
on the nominal operating current of the fan. Note that
the current draw specified by the fan manufacturer may
be a worst-case rating for near-stall conditions and may
not be the fan’s nominal operating current. The values
in Table 5-1 refer to actual average operating current. If
the fan current falls between two of the values listed,
use the higher resistor value. The end result of employ-
ing Table 5-1 is that the signal developed across the
sense resistor is approximately 450 mV in amplitude.
TABLE 5-1: RSENSE VS. FAN CURRENT
Nominal Fan Current (mA)
RSENSE ()
50
9.1
100
4.7
150
3.0
200
2.4
250
2.0
300
1.8
350
1.5
400
1.3
450
1.2
500
1.0
5.5 Output Drive Transistor Selection
The TC642 is designed to drive an external transistor
or MOSFET for modulating power to the fan. This is
shown as Q1 in Figures 3-1, 5-1, 5-4, 5-6, 5-7, 5-8
and 5-9. The VOUT pin has a minimum source current
of 5 mA and a minimum sink current of 1 mA. Bipolar
transistors or MOSFETs may be used as the power
switching element, as shown in Figure 5-7. When high
current gain is needed to drive larger fans, two transis-
tors may be used in a Darlington configuration. Three
possible circuit topologies are shown in Figure 5-7: (a)
shows a single NPN transistor used as the switching
element; (b) illustrates the Darlington pair; and (c)
shows an N-channel MOSFET.
One major advantage of the TC642’s PWM control
scheme versus linear speed control is that the power
dissipation in the pass element is kept very low. Gener-
ally, low cost devices in very small packages, such as
TO-92 or SOT, can be used effectively. For fans with
nominal operating currents of no more than 200 mA, a
single transistor usually suffices. Above 200 mA, the
Darlington or MOSFET solution is recommended. For
the fan sensing function to work correctly, it is impera-
tive that the pass transistor be fully saturated when
“on”.
Table 5-2 gives examples of some commonly available
transistors and MOSFETs. This table should be used
as a guide only since there are many transistors and
MOSFETs which will work just as well as those listed.
The critical issues when choosing a device to use as
Q1 are: (1) the breakdown voltage (V(BR)CEO or VDS
DS21444C-page 12
(MOSFET)) must be large enough to withstand the
highest voltage applied to the fan (Note: This will occur
when the fan is off); (2) 5 mA of base drive current must
be enough to saturate the transistor when conducting
the full fan current (transistor must have sufficient
gain); (3) the VOUT voltage must be high enough to suf-
ficiently drive the gate of the MOSFET to minimize the
RDS(on) of the device; (4) rated fan current draw must
be within the transistor's/MOSFET's current handling
capability; and (5) power dissipation must be kept
within the limits of the chosen device.
A base-current limiting resistor is required with bipolar
transistors (Figure 5-6).
VDD
Fan
VOH = 80% VDD
RBASE
+ VRBASE
+ VBE(SAT)
+
VRSENSE
Q1
RSENSE
GND
FIGURE 5-6:
RBASE.
Circuit For Determining
The correct value for this resistor can be determined as
follows:
VOH
= VRSENSE + VBE(SAT) + VRBASE
VRSENSE = IFAN x RSENSE
VRBASE = RBASE x IBASE
IBASE
= IFAN / hFE
VOH is specified as 80% of VDD in Section 1.0, “Electri-
cal Characteristics”; VBE(SAT) is given in the chosen
transistor’s data sheet. It is now possible to solve for
RBASE.
EQUATION
VOH - VBE(SAT) - VRSENSE
RBASE =
IBASE
2002 Microchip Technology Inc.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]