DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

LH28F800BG-L データシートの表示(PDF) - Sharp Electronics

部品番号
コンポーネント説明
メーカー
LH28F800BG-L Datasheet PDF : 43 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
device selection control, and when active enables
the selected memory device. OE# is the data
output (DQ0-DQ15) control and when active drives
the selected memory data onto the I/O bus. WE#
must be at VIH and RP# must be at VIH or VHH.
Fig. 11 illustrates read cycle.
3.2 Output Disable
With OE# at a logic-high level (VIH), the device
outputs are disabled. Output pins (DQ0-DQ15) are
placed in a high-impedance state.
3.3 Standby
CE# at a logic-high level (VIH) places the device in
standby mode which substantially reduces device
power consumption. DQ0-DQ15 outputs are placed
in a high-impedance state independent of OE#. If
deselected during block erase or word write, the
device continues functioning, and consuming active
power until the operation completes.
3.4 Deep Power-Down
RP# at VIL initiates the deep power-down mode.
In read modes, RP#-low deselects the memory,
places output drivers in a high-impedance state and
turns off all internal circuits. RP# must be held low
for a minimum of 100 ns. Time tPHQV is required
after return from power-down until initial memory
access outputs are valid. After this wake-up
interval, normal operation is restored. The CUI is
reset to read array mode and status register is set
to 80H.
During block erase or word write modes, RP#-low
will abort the operation. RY/BY# remains low until
the reset operation is complete. Memory contents
being altered are no longer valid; the data may be
partially erased or written. Time tPHWL is required
after RP# goes to logic-high (VIH) before another
command can be written.
As with any automated device, it is important to
LH28F800BG-L/BGH-L (FOR TSOP, CSP)
assert RP# during system reset. When the system
comes out of reset, it expects to read from the flash
memory. Automated flash memories provide status
information when accessed during block erase or
word write modes. If a CPU reset occurs with no
flash memory reset, proper CPU initialization may
not occur because the flash memory may be
providing status information instead of array data.
SHARP’s flash memories allow proper CPU
initialization following a system reset through the
use of the RP# input. In this application, RP# is
controlled by the same RESET# signal that resets
the system CPU.
3.5 Read Identifier Codes Operation
The read identifier codes operation outputs the
manufacture code and device code (see Fig. 2).
Using the manufacture and device codes, the
system CPU can automatically match the device
with its proper algorithms.
7FFFF
00002
00001
00000
Reserved for
Future Implementation
Device Code
Manufacture Code
Fig. 2 Device Identifier Code Memory Map
3.6 Write
Writing commands to the CUI enable reading of
device data and identifier codes. They also control
inspection and clearing of the status register. When
VCC = VCC1/2/3/4 and VPP = VPPH1/2/3, the CUI
additionally controls block erasure and word write.
The Block Erase command requires appropriate
command data and an address within the block to
be erased. The Word Write command requires the
command and address of the location to be written.
-9-

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]