DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

ATMEGA16U4-AU(2016) データシートの表示(PDF) - Atmel Corporation

部品番号
コンポーネント説明
メーカー
ATMEGA16U4-AU Datasheet PDF : 439 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and
interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The ADC Noise
Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC
conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is
sleeping. This allows very fast start-up combined with low power consumption.
The device is manufactured using the Atmel® high-density nonvolatile memory technology. The On-chip ISP
Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a
conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The
boot program can use any interface to download the application program in the application Flash memory.
Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing
true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on
a monolithic chip, the device is a powerful microcontroller that provides a highly flexible and cost effective
solution to many embedded control applications.
The ATmega16U4/ATmega32U4 AVR is supported with a full suite of program and system development tools
including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation
kits.
2.2 Pin Descriptions
2.2.1 VCC
Digital supply voltage.
2.2.2 GND
Ground.
2.2.3
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the device as listed on page 74.
2.2.4
Port C (PC7,PC6)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
Only bits 6 and 7 are present on the product pinout.
Port C also serves the functions of special features of the device as listed on page 77.
2.2.5
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output
buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-
stated when a reset condition becomes active, even if the clock is not running.
ATmega16U4/32U4 [DATASHEET ]
5
Atmel-7766J-USB-ATmega16U4/32U4-Datasheet_04/2016

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]