DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

A29001 データシートの表示(PDF) - AMIC Technology

部品番号
コンポーネント説明
メーカー
A29001 Datasheet PDF : 36 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
A29001/A290011 Series
START
Embedded
Program
algorithm in
progress
Increment Address
Write Program
Command
Sequence
Data Poll
from System
Verify Data ?
No
Yes
Last Address ?
Yes
Programming
Completed
Note : See the appropriate Command Definitions table for
program command sequence.
Figure 2. Program Operation
Chip Erase Command Sequence
Chip erase is a six-bus-cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase
algorithm automatically preprograms and verifies the
entire memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any controls
or timings during these operations. The Command
Definitions table shows the address and data
requirements for the chip erase command sequence.
Any commands written to the chip during the Embedded
Erase algorithm are ignored.
The system can determine the status of the erase
operation by using I/O7, I/O6, or I/O2. See "Write Operation
Status" for information on these status bits.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are no
longer latched.
Figure 3 illustrates the algorithm for the erase operation.
See the Erase/Program Operations tables in "AC
Characteristics" for parameters, and to the Chip/Sector
Erase Operation Timings for timing waveforms.
Sector Erase Command Sequence
Sector erase is a six-bus-cycle operation. The sector
erase command sequence is initiated by writing two
unlock cycles, followed by a set-up command. Two
additional unlock write cycles are then followed by the
address of the sector to be erased, and the sector erase
command. The Command Definitions table shows the
address and data requirements for the sector erase
command sequence.
The device does not require the system to preprogram the
memory prior to erase. The Embedded Erase algorithm
automatically programs and verifies the sector for an all
zero data pattern prior to electrical erase. The system is
not required to provide any controls or timings during
these operations.
After the command sequence is written, a sector erase
time-out of 50µs begins. During the time-out period,
additional sector addresses and sector erase commands
may be written. Loading the sector erase buffer may be
done in any sequence, and the number of sectors may be
from one sector to all sectors. The time between these
additional cycles must be less than 50µs, otherwise the
last address and command might not be accepted, and
erasure may begin. It is recommended that processor
interrupts be disabled during this time to ensure all
commands are accepted. The interrupts can be re-
enabled after the last Sector Erase command is written. If
the time between additional sector erase commands can
be assumed to be less than 50µs, the system need not
monitor I/O3. Any command other than Sector Erase or
Erase Suspend during the time-out period resets the
device to reading array data. The system must rewrite the
command sequence and any additional sector addresses
and commands.
The system can monitor I/O3 to determine if the sector
erase timer has timed out. (See the " I/O3: Sector Erase
Timer" section.) The time-out begins from the rising edge
of the final WE pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands are
ignored.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are no
longer latched. The system can determine the status of
the erase operation by using I/O7, I/O6, or I/O2. Refer to
"Write Operation Status" for information on these status
bits. Figure 3 illustrates the algorithm for the erase
operation. Refer to the Erase/Program Operations tables
in the "AC Characteristics" section for parameters, and to
the Sector Erase Operations Timing diagram for timing
waveforms.
Erase Suspend/Erase Resume Commands
The Erase Suspend command allows the system to
interrupt a sector erase operation and then read data from,
or program data to, any sector not selected for erasure.
This command is valid only during the sector erase
operation, including the 50µs time-out period during the
sector erase command sequence. The Erase Suspend
(December, 2004, Version 1.3)
9
AMIC Technology, Corp.

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]