DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY14B256KA-SP25XI データシートの表示(PDF) - Cypress Semiconductor

部品番号
コンポーネント説明
メーカー
CY14B256KA-SP25XI
Cypress
Cypress Semiconductor Cypress
CY14B256KA-SP25XI Datasheet PDF : 27 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
CY14B256KA
register clears the alarm flag bit (and all others). A hardware
interrupt pin may also be used to detect an alarm event.
To set, clear or enable an alarm, set the ‘W’ bit (in flags register
– 0x7FF0) to ‘1’ to enable writes to Alarm Registers. After writing
the alarm value, clear the ‘W’ bit back to ‘0’ for the changes to
take effect.
Note CY14B256KA requires the alarm match bit for seconds (bit
‘D7’ in Alarm-Seconds register 0x7FF2) to be set to ‘0’ for proper
operation of Alarm Flag and Interrupt..
Watchdog Timer
The watchdog timer is a free running down counter that uses the
32 Hz clock (31.25 ms) derived from the crystal oscillator. The
oscillator must be running for the watchdog to function. It begins
counting down from the value loaded in the watchdog timer
register.
The timer consists of a loadable register and a free running
counter. On power-up, the watchdog time out value in register
0x7FF7 is loaded into the counter load register. Counting begins
on power-up and restarts from the loadable value any time the
watchdog strobe (WDS) bit is set to ‘1’. The counter is compared
to the terminal value of ‘0’. If the counter reaches this value, it
causes an internal flag and an optional interrupt output. You can
prevent the time out interrupt by setting WDS bit to ‘1’ prior to the
counter reaching ‘0’. This causes the counter to reload with the
watchdog time out value and to be restarted. As long as the user
sets the WDS bit prior to the counter reaching the terminal value,
the interrupt and WDT flag never occur.
New time out values are written by setting the watchdog write bit
to ‘0’. When the WDW is ‘0’, new writes to the watchdog time out
value bits D5–D0 are enabled to modify the time out value. When
WDW is ‘1’, writes to bits D5–D0 are ignored. The WDW function
enables a user to set the WDS bit without concern that the
watchdog timer value is modified. A logical diagram of the
watchdog timer is shown in Figure 3. Note that setting the
watchdog time out value to ‘0’ disables the watchdog function.
The output of the watchdog timer is the flag bit WDF that is set if
the watchdog is allowed to time out. If the watchdog interrupt
enable (WIE) bit in the interrupt register is set, a hardware
interrupt on INT pin is also generated on watchdog timeout. The
flag and the hardware interrupt are both cleared when user reads
the flags register.
.
Figure 3. Watchdog Timer Block Diagram
Oscillator
32,768 KHz
Clock
Divider
32 Hz
Counter
1 Hz
Zero
Compare
WDF
WDS
WDW
DQ
Q
write to
Watchdog
Register
Load
Register
Watchdog
Register
Power Monitor
The CY14B256KA provides a power management scheme with
power fail interrupt capability. It also controls the internal switch
to backup power for the clock and protects the memory from low
VCC access. The power monitor is based on an internal band gap
reference circuit that compares the VCC voltage to VSWITCH
threshold.
As described in the AutoStore Operation on page 4, when
VSWITCH is reached as VCC decays from power loss, a data
STORE operation is initiated from SRAM to the nonvolatile
elements, securing the last SRAM data state. Power is also
switched from VCC to the backup supply (battery or capacitor) to
operate the RTC oscillator.
When operating from the backup source, read and write
operations to nvSRAM are inhibited and the RTC functions are
not available to the user. The RTC clock continues to operate in
the background. The updated RTC time keeping registers data
are available to the user after VCC is restored to the device (see
AutoStore/Power-Up RECALL on page 20).
Interrupts
The CY14B256KA has flags register, interrupt register and
interrupt logic that can signal interrupt to the microcontroller.
There are three potential sources for interrupt: watchdog timer,
power monitor, and alarm timer. Each of these can be individually
enabled to drive the INT pin by appropriate setting in the interrupt
register (0x7FF6). In addition, each has an associated flag bit in
the flags register (0x7FF0) that the host processor uses to
determine the cause of the interrupt. The INT pin driver has two
bits that specify its behavior when an interrupt occurs.
An interrupt is raised only if both a flag is raised by one of the
three sources and the respective interrupt enable bit in interrupts
register is enabled (set to ‘1’). After an interrupt source is active,
two programmable bits, H/L and P/L, determine the behavior of
the output pin driver on INT pin. These two bits are located in the
interrupt register and can be used to drive level or pulse mode
output from the INT pin. In pulse mode, the pulse width is
internally fixed at approximately 200 ms. This mode is intended
to reset a host microcontroller. In the level mode, the pin goes to
its active polarity until the flags register is read by the user. This
mode is used as an interrupt to a host microcontroller. The
control bits are summarized in the following section.
Interrupts are only generated while working on normal power and
are not triggered when system is running in backup power mode.
Note CY14B256KA generates valid interrupts only after the
Powerup RECALL sequence is completed. All events on INT pin
must be ignored for tHRECALL duration after powerup.
Interrupt Register
Watchdog Interrupt Enable (WIE). When set to ‘1’, the
watchdog timer drives the INT pin and an internal flag when a
watchdog time out occurs. When WIE is set to ‘0’, the watchdog
timer only affects the WDF flag in flags register.
Alarm Interrupt Enable (AIE). When set to ‘1’, the alarm match
drives the INT pin and an internal flag. When AIE is set to ‘0’, the
alarm match only affects the AF flag in flags register.
Power Fail Interrupt Enable (PFE). When set to ‘1’, the power
fail monitor drives the pin and an internal flag. When PFE is set
Document Number: 001-55720 Rev. *G
Page 9 of 27

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]