DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MAX536(2011) データシートの表示(PDF) - Maxim Integrated

部品番号
コンポーネント説明
メーカー
MAX536 Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
Calibrated, Quad, 12-Bit
Voltage-Output DACs with Serial Interface
SS is an input intended for use in a multimaster environ-
ment. However, SS or unused PORT D bit RXD, TXD, or
possibly MISO (if DAC readback is not used) should be
configured as a general-purpose output and used as CS by
setting the appropriate Data Direction Register bit.
Unipolar Output
For a unipolar output, the output voltages and the reference
inputs are the same polarity. Figure 10 shows the
MAX536/MAX537 unipolar output circuit, which is also the typ-
ical operating circuit. Table 5 lists the unipolar output codes.
The SPCR configuration (memory location $1028) is shown
below:
BIT
76 5
4
3
2
1
0
NAME
SPIE SPE DWOM MSTR CPOL CPHA SPR1 SPR0
SETTING AFTER RESET
00 0
0
0 1 U* U*
Bipolar Output
The MAX536/MAX537 outputs can be configured for
bipolar operation using Figure 11’s circuit. One op amp
and two resistors are required per DAC. With R1 = R2:
VOUT = VREF [(2NB/4096) - 1]
where NB is the numeric value of the DAC’s binary input
code. Table 6 shows digital codes and corresponding
output voltages for Figure 11’s circuit.
SETTING FOR TYPICAL SPI COMMUNICATION
01 0
1
0
0 0** 1**
*U = Unknown
**Depends on µP clock frequency.
Always configure the 68HC11 as the “master” controller
and the MAX536/MAX537 as the “slave” device.
When MSTR = 1 in the SPCR, a write to the Serial
Peripheral Data I/O Register (SPDR), located at memory
location $102A, initiates the transmission/reception of
data. The data transfer is monitored and the appropri-
ate flags are set in the Serial Peripheral Status
Register (SPSR).
The SPSR configuration is shown below:
BIT
7
6
5
4
32
1
0
NAME
SPIF WCOL – MODF –
RESET CONDITIONS
0
0
0
0
00
0
0
An example of 68HC11 programming code for a
two-byte SPI transfer to the MAX536/MAX537 is given in
Table 4. SS is used for CS, the high byte of MAX536/
MAX537 digital data is stored in memory location $0100,
and the low byte is stored in memory location $0101.
Table 5. Unipolar Code Table
DAC CONTENTS
MSB
LSB
1111 1111 1111
ANALOG OUTPUT
+VREF
(
—4—09—5
4096
)
1000 0000 0001
+VREF
(
—2—04—9
4096
)
1000 0000 0000
+VREF ( —2—04—8 ) = —+—VREF
4096
2
0111 1111 1111
+VREF
(
—2—04—7
4096
)
0000
0000
0000 0001
0000 0000
+VREF
(
——1 —
4096
)
0V
Table 6. Bipolar Code Table
DAC CONTENTS
MSB
LSB
1111 1111 1111
ANALOG OUTPUT
+VREF ( —22—0044—87 )
1000 0000 0001
+VREF ( —2—014—8 )
Interfacing to Other Controllers
When using MICROWIRE, refer to the section on Inter-
facing to the M68HC11 for guidance, since MICROWIRE
can be considered similar to SPI when CPOL = 0 and
CPHA = 0. When interfacing to Intel’s 80C51/80C31
microcontroller family, use bit-pushing to configure a
desired port as the MAX536/MAX537 interface port. Bit-
pushing involves arbitrarily assigning I/O port bits as
interface control lines, and then writing to the port each
time a signal transition is required.
1000
0111
0000 0000
1111 1111
0000 0000 0001
0000 0000 0000
NOTE:
1
LSB
=
(VREF)
(
1
4096
)
0V
-VREF ( —2—014—8 )
-VREF ( —22—0044—78 )
-VREF
(
—20—4—8
2048
)
=
-VREF
20 ______________________________________________________________________________________

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]