DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

Q67000-A2379 データシートの表示(PDF) - Siemens AG

部品番号
コンポーネント説明
メーカー
Q67000-A2379 Datasheet PDF : 26 Pages
1 2 3 4 5 6 7 8 9 10 Next Last
TDA 4601
Circuit Description
The TDA 4601 is designed for driving, controlling and protecting the switching transistor in flyback
converter power supplies during start-up, normal and overload operations as well as during
disturbed operation. In case of disturbance the drive of the switching transistor is inhibited and a
secondary voltage rise is prevented.
Start-Up
The start-up procedures (on-mode) include three consecutive operating phases as follows:
1. Build-Up of Internal Reference Voltage
The internal reference voltage supplies the voltage regulator and effects charging of the coupling
electrolytic capacitor connected to the switching transistor. Current consumption will remain at
I9 < 3.2 mA with a supply voltage up to V9 approx. 12 V.
2. Enabling of Internal Voltage - Reference Voltage V1 = 4 V
Simultaneously with V9 reaching approx. 12 V, an internal voltage becomes available, providing
all component elements, with the exception of the control logic, with a thermally stable and
overload-resistant current supply.
3. Enabling of Control Logic
In conjunction with the generation of the reference voltage, the current supply for the control logic
is activated by means of an additional stabilization circuit. The integrated circuit is then ready for
operation.
The start-up phase above described are necessary for ensuring the charging of the coupling
electrolytic capacitor, which in turn supplies the switching transistor. Only then is it possible to
ensure that the transistor switches accurately.
Normal Operating Mode / Control Operating Mode
At the input of pin 2 the zero passages of the frequency provided by the feedback coil are registered
and forwarded to the control logic. Pin 3 (control input, overload and standby identification) receives
the rectified amplitude fluctuations of the feedback coil. The control amplifier operates with an input
voltage of approx. 2 V and a current of approx. 1.4 mA. Depending on the internal voltage reference,
the overload identification limits inconjunction with collector current simulator pin 4 the operating
range of the control amplifier. The collector current is simulated by an external RC-combination
present at pin 4 and internally set threshold voltages. The largest possible collector current
applicable to the switching transistor (point of return) increases in proportion to the increased
capacitance (10 nF). Thus the required operating range of the control amplifier is established. The
range of control lies between a DC-voltage clamped at 2 V and a sawtooth - shaped rising AC-
voltage, which can vary up to a max. amplitude of 4 V (reference voltage). During secondary load
reduction to approx. 20 W, the switching frequency is increased (approx. 50 kHz) at an almost
constant pulse duty factor (1:3). During additional secondary load decreases to approx. 1 W, the
switching frequency increases to approx. 70 kHz and pulse duty factor to approx. 1:11. At the same
time collector peak current is reduced to < 1 A.
Semiconductor Group
9

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]