DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

CY7C1371D-133BGC(2007) データシートの表示(PDF) - Cypress Semiconductor

部品番号
コンポーネント説明
メーカー
CY7C1371D-133BGC
(Rev.:2007)
Cypress
Cypress Semiconductor Cypress
CY7C1371D-133BGC Datasheet PDF : 0 Pages
CY7C1371D
CY7C1373D
details) inputs is latched into the device and the write is
complete. Additional accesses (Read/Write/Deselect) can be
initiated on this cycle.
The data written during the Write operation is controlled by
BWX signals. The CY7C1371D/CY7C1373D provides byte
write capability that is described in the truth table. Asserting
the Write Enable input (WE) with the selected Byte Write
Select input selectively writes to only the desired bytes. Bytes
not selected during a byte write operation remains unaltered.
A synchronous self-timed write mechanism has been provided
to simplify the write operations. Byte write capability has been
included to greatly simplify Read/Modify/Write sequences,
which can be reduced to simple byte write operations.
Because the CY7C1371D/CY7C1373D is a common IO
device, data must not be driven into the device while the
outputs are active. The Output Enable (OE) can be deasserted
HIGH before presenting data to the DQs and DQPX inputs.
Doing so tri-states the output drivers. As a safety precaution,
DQs and DQPX are automatically tri-stated during the data
portion of a write cycle, regardless of the state of OE.
Burst Write Accesses
The CY7C1371D/CY7C1373D has an on-chip burst counter
that allows the user the ability to supply a single address and
conduct up to four Write operations without reasserting the
address inputs. ADV/LD must be driven LOW to load the initial
address, as described in the Single Write Access section
above. When ADV/LD is driven HIGH on the subsequent clock
rise, the Chip Enables (CE1, CE2, and CE3) and WE inputs are
ignored and the burst counter is incremented. The correct
BWX inputs must be driven in each cycle of the burst write, to
write the correct bytes of data.
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CE1, CE2, and CE3, must remain inactive
for the duration of tZZREC after the ZZ input returns LOW.
Interleaved Burst Address Table
(MODE = Floating or VDD)
First
Address
A1: A0
Second
Address
A1: A0
Third
Address
A1: A0
00
01
10
01
00
11
10
11
00
11
10
01
Fourth
Address
A1: A0
11
10
01
00
Linear Burst Address Table (MODE = GND)
First
Address
A1: A0
Second
Address
A1: A0
Third
Address
A1: A0
Fourth
Address
A1: A0
00
01
10
11
01
10
11
00
10
11
00
01
11
00
01
10
ZZ Mode Electrical Characteristics
Parameter
Description
IDDZZ
tZZS
tZZREC
tZZI
tRZZI
Sleep mode standby current
Device operation to ZZ
ZZ recovery time
ZZ active to sleep current
ZZ Inactive to exit sleep current
Test Conditions
Min
Max
Unit
ZZ > VDD – 0.2V
80
mA
ZZ > VDD – 0.2V
2tCYC
ns
ZZ < 0.2V
2tCYC
ns
This parameter is sampled
2tCYC
ns
This parameter is sampled 0
ns
Document #: 38-05556 Rev. *F
Page 9 of 29

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]