DatasheetQ Logo
Electronic component search and free download site. Transistors,MosFET ,Diode,Integrated circuits

MBRS340 データシートの表示(PDF) - Linear Technology

部品番号
コンポーネント説明
メーカー
MBRS340 Datasheet PDF : 24 Pages
First Prev 11 12 13 14 15 16 17 18 19 20 Next Last
LT3975
APPLICATIONS INFORMATION
Step-down regulators draw current from the input sup-
ply in pulses with very fast rise and fall times. The input
capacitor is required to reduce the resulting voltage
ripple at the LT3975 and to force this very high frequency
switching current into a tight local loop, minimizing EMI.
A 4.7μF capacitor is capable of this task, but only if it is
placed close to the LT3975 (see the PCB Layout section).
A second precaution regarding the ceramic input capacitor
concerns the maximum input voltage rating of the LT3975.
A ceramic input capacitor combined with trace or cable
inductance forms a high quality (under damped) tank
circuit. If the LT3975 circuit is plugged into a live supply,
the input voltage can ring to twice its nominal value, pos-
sibly exceeding the LT3975’s voltage rating. If the input
supply is poorly controlled or the user will be plugging
the LT3975 into an energized supply, the input network
should be designed to prevent this overshoot. See Linear
Technology Application Note 88 for a complete discussion.
Output Capacitor and Output Ripple
The output capacitor has two essential functions. Along
with the inductor, it filters the square wave generated by the
LT3975 to produce the DC output. In this role it determines
the output ripple, so low impedance (at the switching
frequency) is important. The second function is to store
energy in order to satisfy transient loads and stabilize the
LT3975’s control loop. Ceramic capacitors have very low
equivalent series resistance (ESR) and provide the best
ripple performance. A good starting value is:
COUT
=
200
VOUT fSW
where fSW is in MHz, and COUT is the recommended output
capacitance in μF. Use X5R or X7R types. This choice will
provide low output ripple and good transient response.
Transient performance can be improved with a higher value
capacitor if combined with a phase lead capacitor (typically
10pF) between the output and the feedback pin. A lower
value of output capacitor can be used to save space and
cost but transient performance will suffer.
When choosing a capacitor, look carefully through the
data sheet to find out what the actual capacitance is under
operating conditions (applied voltage and temperature).
A physically larger capacitor or one with a higher voltage
rating may be required. Table 3 lists several capacitor
vendors.
Table 3. Recommended Ceramic Capacitor Vendors
MANUFACTURER
URL
AVX
www.avxcorp.com
Murata
www.murata.com
Taiyo Yuden
www.t-yuden.com
Vishay Siliconix
www.vishay.com
TDK
www.tdk.com
Ceramic Capacitors
When in dropout, the LT3975 can excite ceramic ca-
pacitors at audio frequencies. At high load, this could be
unacceptable. Simply adding bulk input capacitance to
the input and output will significantly reduce the voltage
ripple and the audible noise generated at these nodes to
acceptable levels.
A final precaution regarding ceramic capacitors concerns
the maximum input voltage rating of the LT3975. As pre-
viously mentioned, a ceramic input capacitor combined
with trace or cable inductance forms a high quality (under
damped) tank circuit. If the LT3975 circuit is plugged into a
live supply, the input voltage can ring to twice its nominal
value, possibly exceeding the LT3975’s rating. If the input
supply is poorly controlled or the user will be plugging
the LT3975 into an energized supply, the input network
should be designed to prevent this overshoot. See Linear
Technology Application Note 88 for a complete discussion.
Catch Diode Selection
The catch diode (D1 from the Block Diagram) conducts
current only during the switch off time. Average forward
current in normal operation can be calculated from:
ID( AVG)
=
IOUT

VIN
– VOUT
VIN

where IOUT is the output load current. The current rating of
the diode should be selected to be greater than or equal to
the application’s output load current, so that the diode is
3975f
16

Share Link: 

datasheetq.com  [ Privacy Policy ]Request Datasheet ] [ Contact Us ]